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Abstract

Anomaly detection holds great potential for detecting previously unknown attacks. In order
to be effective in a practical environment, anomaly detection systems have to be capable of
online learning and handling concept drift. In this paper, a new adaptive anomaly detection
framework, based on the use of unsupervised evolving connectionist systems, is proposed to
address these issues. It is designed to adapt to normal behavior changes while still recognizing
anomalies. The evolving connectionist systems learn a subject’s behavior in an online, adaptive
fashion through efficient local element tuning. Experiments with the KDD Cup 1999 network
data and the Windows NT user profiling data show that our adaptive anomaly detection
systems, based on Fuzzy Adaptive Resonance Theory (ART) and Evolving Fuzzy Neural
Networks (EFuNN), can significantly reduce the false alarm rate while the attack detection
rate remains high.
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1. Introduction

Computer security vulnerabilities and flaws are being discovered every day. Given the
rapid increase in connectivity and accessibility of computer systems in today’s society,
computer intrusions and security breaches are posing serious threats to national security
as well as enterprise interests. As one of the two general approaches to intrusion detection,
anomaly detection has been under intensive study for the last two decades (McHugh,
2001). Unlike the alternative approach, misuse detection, which generates an alarm when
a known attack signature is matched, anomaly detection analyzes a set of characteristics
of the monitored system (or users) and identifies activities that deviate from the normal
behavior. It is assumed that such deviations may indicate that an intrusion or attack
exploiting vulnerabilities has occurred (or may still be occurring). Any observable
behavior of the system can be used to build a model of the normal operation of the
system. Audit logs, network traffic, user commands and system calls are all common
choices. While misuse detection is effective in recognizing previously known intrusion
types, anomaly detection holds great potential for detecting attempts to exploit new and
unforeseen vulnerabilities, as well as “abuse of privileges” types of attacks by legitimate
users, the so-called “insider threat.”

The goal of anomaly detection is to identify anomalous activities (i.e., rare,
unusual events) in the audit data stream accurately and in a timely fashion. Over the
years, many machine learning and statistical methods have been proposed for
anomaly detection, including rule-based approaches (Lee and Stolfo, 2000),
immunological-based approaches (Forrest et al., 1996), neural nets (Debar et al.,
1992; Ghosh and Schwartzbard, 1999), instance-based approaches (Lane and
Brodley, 1999; Liao and Vemuri, 2002), clustering methods (Eskin et al., 2002;
Lazarevic et al., 2003), probabilistic learning methods (Eskin, 2000; Mahoney and
Chan, 2002), multi-covariance analysis (Javitz and Valdes, 1994), and so on.
However, in real-world applications, anomaly-based intrusion detection systems
(IDSes) tend to give less than satisfactory performance and generate excessive false
alarms. Summarized below are three main reasons.

First, there is a fundamental asymmetry in anomaly detection problems: normal
activity is common and intrusive activity is rare. One often faces a training set
consisting of a handful of attack examples and much more normal examples, or no
attack example at all. The skewed class distribution presents difficult challenges to
machine learning methods, especially to discriminative methods that try to learn the
distinction between normal and abnormal classes.

Second, many previous anomaly detection approaches involve off-line learning,
where data is collected, manually labeled, and then provided to a learning algorithm
to build the model of the normal (and abnormal) behavior. In a practical
environment, an IDS is operating continuously and new data is available at every
time instant. Thus, it may be prohibitively expensive to frequently update the
training corpus with clean labeled new batch of audit data and re-train the IDS.

Last, most machine learning and statistical methods assume that the training
examples are drawn from a stationary distribution. In practice, however, system and
network activities as well as user behavior could change for bonafide reasons. Therefore,
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the normal behavior may not be strictly predictable in the long term. This problem,
known as concept drift in machine learning literature, presents a significant challenge for
anomaly detection. An effective anomaly detection system should be capable of adapting
to normal behavior changes while still recognizing anomalous activities. Otherwise, large
amount of false alarms would be generated if the normal behavior model of the IDS failed
to change accordingly to accommodate the new patterns.

In this paper, we present an adaptive anomaly detection framework that are suitable for
dynamic, changing environments. Our framework employs unsupervised evolving
connectionist systems to learn system, network or user behavior in an online, adaptive
fashion without a priori knowledge of the underlying non-stationary data distributions.
Normal behavior changes are efficiently accommodated while anomalous activities can
still be identified.

Adaptive learning and evolving connectionist systems are an active area of artificial
intelligence research. Evolving connectionist systems are artificial neural networks that
resemble the human cognitive information processing models. They are stable enough to
retain patterns learned from previously observed data while being flexible enough to learn
new patterns from new incoming data. Due to their self-organizing and adaptive nature,
they provide powerful tools for modeling evolving processes and knowledge discovery
(Kasabov, 2002).

Our adaptive anomaly detection framework performs one-pass clustering of the input
data stream that represents a monitored subject’s behavior patterns. Each new incoming
instance is assigned to one of the three states: normal, uncertain and anomalous. Two
different alarm levels are defined to reduce the risk of false alarming. We evaluated our
adaptive anomaly detection systems, based on the Fuzzy Adaptive Resonance Theory
(Fuzzy ART) (Carpenter et al., 1991) and Evolving Fuzzy Neural Networks (EFuNN)
(Kasabov, 2001), over two types of data sets, the KDD Cup 1999 network data (The third
international knowledge discovery and data mining tools competition (KDD cup 1999)
data, 1999) and Windows NT user profiling data. Our experiments show that both
evolving connectionist systems are able to adapt to user or network normal behavior
changes and at the same time detect anomalous activities. Compared to support vector
machines (SVM)-based static learning, our adaptive anomaly detection systems
significantly reduced the false alarm rate.

The rest of this paper is organized as follows: in Section 2, we review some related work
on adaptive anomaly detection. Section 3 presents our adaptive framework and a brief
introduction to Fuzzy ART and EFuNN. Section 4 details our experiments with the
KDD Cup 1999 network data and the Windows NT user profiling data. Section 5
contains further discussions. Finally, we summarize our conclusions and future work in
Section 6.

2. Related work

To handle concept drift and non-stationary data distributions, a common practice is to
forget out-of-data statistics of the data and favor recent events using a decay or aging
factor. For example, NIDES (Javitz and Valdes, 1994) compares a user’s short-term
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behavior to the user’s long-term behavior. The user profiles keep statistics such as
frequency table, means and covariance, which are constantly aged by multiplying them by
an exponential decay factors. This method of aging creates a moving time window for the
profile data, so that the new behavior is only compared to the most recently observed
behaviors that fall into the time window. Similarly, SmartSifter (Yamanishi et al., 2004)
employs discounting algorithms to gradually fade the effect of past examples. Mahoney
and Chan (2002) took training decay to the extreme by discarding all events before the
most recent occurrence. There is one theoretical and one practical problem with this aging
or time window approach. Theoretically, no justification has been provided for the
assumption that a user’s behavior changes gradually. Notwithstanding this theoretical
gap, the decay factor is usually chosen in an ad hoc manner. By contrast, our evolving
connectionist systems are able to adapt to normal behavior changes without losing earlier
information.

There were a few other previous efforts on adaptive intrusion detection. Teng et al.
(1990) proposed a time-based inductive learning approach to perform adaptive real-time
anomaly detection. Sequential rules were generated dynamically to adapt to changes in a
user’s behavior. Lane and Brodley (1998) proposed a nearest-neighbor classifiers-based
online learning scheme and examined the issues of incremental updating of system
parameters and instance selection. Finite mixture models were employed in Eskin et al.
(2000) to generate adaptive probabilistic models and detect anomalies within a data set.
Fan (2001) used ensembles of classification models to adapt existing models in order to
detect newly established patterns. Hossain and Bridges (2001) proposed a fuzzy
association rule mining architecture for adaptive anomaly detection.

Compared to previous statistical and rule-learning-based adaptive anomaly
detection systems, our framework does not require a priori knowledge of the
underlying data distributions. Through the use of evolving connectionist systems, it
provides efficient adaptation to new patterns in a dynamic environment. Unlike
other neural networks that have been applied to intrusion detection (e.g., Debar et
al. (1992); Ghosh and Schwartzbard (1999)) as ‘“black boxes,” our evolving
connectionist systems can provide knowledge (i.e., the weight vectors) to “explain’
the learned normal behavior patterns.

Our approach also falls into the category of unsupervised anomaly detection (Eskin et
al., 2002; Lazarevic et al., 2003) as it does not require the knowledge of data labels.
However, our algorithms assign each instance into a cluster in an online, adaptive mode.
No distinction between training and testing has to be made. Therefore, the period of
system initialization during which all behaviors are assumed normal is not necessary.

Another research project closely related to ours is ADMIT (Sequeira and Zaki,
2002), which uses semi-incremental clustering techniques to create user profiles.
Different types of alarms are also introduced.

3. Adaptive anomaly detection framework

In addressing the problem of adaptive anomaly detection two fundamental
questions arise: (a) How to generate a model or profile that can concisely describe a



64 Y. Liao et al. | Journal of Network and Computer Applications 30 (2007) 60-80

subject’s normal behavior, and more importantly, can it be updated efficiently to
accommodate new behavior patterns? (b) How to select instances to update the
model without introducing noise and incorporating abnormal patterns as normal?
Our adaptive anomaly detection framework addresses these issues through the use of
online unsupervised learning methods, under the assumption that normal instances
cluster together in the input space, whereas the anomalous activities correspond to
outliers that lie in sparse regions of the input space. Our framework is general in that
the underlying clustering method can be any online unsupervised evolving
connectionist system and it can be used for different types of audit data. Without
loss of generality, we assume the audit data that is continuously fed into the adaptive
anomaly detection system has been transformed into a stream of input vectors after
pre-processing, where the input features describe the monitored subject’s behavior.

The evolving connectionist systems are designed for modeling evolving processes.
They operate continuously in time and adapt their structure and functionality
through a continuous interaction with the environment (Kasabov, 2002). They can
learn in unsupervised, supervised or reinforcement learning modes. The online
unsupervised evolving connectionist systems provide one-pass clustering of an input
data stream, where there is no predefined number of different clusters that the data
belong to.

A simplified diagram of an evolving connectionist system for online unsupervised
learning is given in Fig. 1(a) (some systems such as EFuNN may have an additional
fuzzy input layer, shown in Fig. 1(b), which represents the fuzzy quantization of the
original inputs with the use of membership functions (Jang et al., 1997). A typical
unsupervised evolving connectionist system consists of two layers of nodes: an input
layer that reads the input vectors into the system continuously, and a pattern layer
(or cluster layer) representing previously learned patterns. Each pattern node
corresponds to a cluster in the input space. Each cluster, in turn, is represented by a
weight vector. Then the subject’s normal behavior profile is conveniently described
as a set of weight vectors that represent the clustering of the previous audit data.

A distance measure has to be defined to measure the mismatch between a new
instance (i.e., a new input vector) and existing patterns. Based on the distance
measure, the system either assigns an input vector to one of the existing patterns and
updates the pattern weight vector to accommodate the new input, or otherwise
creates a new pattern node for the input. The details of clustering vary with different
evolving connectionist systems.

In order to reduce the risk of false alarms (classifying normal instances as
abnormal), we define three states of behavior patterns (i.e., the pattern nodes of the
evolving connectionist system): normal, uncertain and anomalous. Accordingly, each
instance is labeled as either normal, uncertain or anomalous. In addition, the alarm is
differentiated into two levels: Level 1 alarm and Level 2 alarm, representing different
degrees of anomaly. As illustrated in Fig. 2, a new instance is assigned to one of the
existing normal patterns and labeled normal if the similarity between the input vector
and the normal pattern is above a threshold (the vigilance parameter). Otherwise, it is
uncertain. The uncertain instance is either assigned to one of the existing uncertain
patterns if it is close enough to that uncertain pattern, or becomes the only member
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Fig. 1. (a) A simplified diagram of an evolving connectionist system for unsupervised learning. The system
has n input nodes and m pattern nodes. There is a connection from each input node to every pattern node.
Some connections are not shown in the figure. (b) An evolving connectionist system that has an additional
fuzzy input layer. The task of the fuzzy input nodes is to transfer the input values into membership
degrees.

of a new uncertain pattern. A Level 1 alarm is triggered whenever a new uncertain
pattern is created as the new instance is different from all the learned patterns and
thus deserves special attention. At this point, some preliminary security measures
need to be taken. However, one cannot draw a final conclusion yet. The new instance
can be truly anomalous or merely the beginning of a new normal behavior pattern,
which will be determined by the subsequent instances. After the processing of a
certain number (the N,.. parameter) of the subsequent instances in the same
manner, if the number of members of an uncertain pattern reaches a threshold value
(the Miny,, parameter), the uncertain pattern becomes a normal pattern and the
labels of all its members are changed from uncertain to normal. This indicates that a
new behavior pattern has been developed and incorporated into the subject’s normal
behavior profile as enough instances have shown the same pattern. On the other
hand, after N, subsequent instances, any uncertain pattern with less than Min, .,
members will be destroyed and all its members are labeled anomalous. This will make
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(1) Assign the first instance to a new uncertain pattern and label it uncertain.
(2) Consider the next instance.

(a) If the similarity between this instance and one of the existing normal
patterns is above vigilance, assign it to the normal pattern and label it
normal.

(b) If the instance is close enough to one of the existing uncertain patterns,
assign it to the wuncertain pattern and label it uncertain.

(c¢) Otherwise, the instance becomes the only member of a new uncertain
pattern. A Level 1 alarm is triggered.

(d) Increase the age of each existing uncertain pattern by 1.

(e) for each uncertain pattern whose age has reached Ny, if it has more
than Min e,s members, it becomes a normal pattern and change the
labels of all its members from uncertain to normal. Otherwise, the un-
certain pattern is destroyed and all its members are labeled anomalous.
Level 2 alarms are issued.

(3) Repeat step 2 to process subsequent instances.

Fig. 2. Pseudo-code for adaptive anomaly detection.

sure that anomalous patterns, corresponding to the sparse regions in the input space,
will not be included into the normal profile. A Level 2 alarm is issued when an
instance is labeled anomalous and further response actions are expected.

The main tunable parameters of an adaptive anomaly detection system are
summarized as follows:

e Vigilance p: This threshold controls the degree of mismatch between new
instances and existing patterns that the system can tolerate.

e Learning rate f3: It determines how fast the system should adapt to a new instance
when it is assigned to a pattern.

® Nyuen: It is the period that the system will wait before making a decision on a
newly created uncertain pattern.

o Min un,: The minimum number of members that an uncertain pattern should have
in order to be recognized as a normal pattern.

Our framework does not require a priori knowledge of the number of input
features. When a new input feature is presented, the system simply adds a new input
node to the input layer and connections from this newly created input node to the
existing pattern nodes. This can be very important when the features that describe a
subject’s behavior grow over time and cannot be foreseen in a dynamic environment.
Similarly, accommodation of a new pattern is efficiently realized by creating a new
pattern node and adding connections from input nodes to this new pattern node. The
rest of the structure remains the same.

With the framework, the learned normal profile is expressed as a set of weight
vectors representing the coordinates of the cluster centers in the input space. These
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weight vectors can be interpreted as a knowledge presentation that can be used to
describe the subject’s behavior patterns, and thus they can facilitate understanding of
the subject’s behavior. The weight vectors are stored in the long-term memory of the
connectionist systems. Since new instances are compared to all previously learned
patterns, recurring activities would be recognized easily.

While the underlying clustering method of the adaptive anomaly detection
framework can be any unsupervised evolving connectionist system, Fuzzy ART and
the unsupervised learning version of EFuNN are adapted for anomaly detection in
this paper. Both of them are conceptually simple and computationally fast.
Furthermore, they cope well with fuzzy data, and the fuzzy distance measures help
to smooth the abrupt separation of normality and abnormality of a subject’s
behavior. Below is a brief introduction to Fuzzy ART and EFulNN.

3.1. Fuzzy ART

Fuzzy ART (Carpenter et al., 1991) is a member of the ART neural network
family (Carpenter and Grossberg, 1991). It incorporates computations from fuzzy
set theory (Jang et al., 1997) into the ART 1 neural network. It is capable of fast
stable unsupervised category learning and pattern recognition in response to
arbitrary input sequences.

Fuzzy ART clusters input vectors into patterns based on two separate distance

criteria, match and choice. For input vector X and pattern j, the match function is
defined by

X AW

Si(X) = X

©)
where W; is the weight vector associated with pattern j. Here, the fuzzy AND
operator A is defined by

(X AY); = min(x;, y;) (2)
and the norm | - | is defined by

1X| = Z |x;]. 3)

The choice function is defined by

X AW

T{(X)=—F"> 4
0= 0
where « is a small constant.

For each input vector X, Fuzzy ART assigns it to the pattern j that maximizes
T;(X) while satisfying S;(X)>=p, where p is the vigilance parameter, 0<p<1. The

weight vector W, is then updated according to

W = B A WD) + (1= pe, 5)
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Fig. 3. Flow graph representation of the Fuzzy ART algorithm.

where f is the learning rate parameter, 0< < 1. If no such pattern can be found, a
new pattern node is created. This procedure is illustrated in Fig. 3.

In order to avoid the pattern proliferation problem, Fuzzy ART uses a
complement coding technique to normalize the inputs. The complement of vector
X, denoted by X¢, is defined by

X =1-x. (6)

For an n-dimensional original input X, the complemented coded input X’ to the
Fuzzy ART system is the 2n-dimensional vector

X/=(X,XC)E(Xl,xz,...,XH,XT,XS,...,XE). (7)

3.2. EFuNN

EFuNN is one of the evolving connectionist systems developed by Kasabov (2001)
that is capable of modeling evolving processes through incremental, online learning.
It has been successfully applied to bio-informatics, speech and image recognition
(Kasabov, 2002). The original EFuNN has a five-layer structure. Here, we only use
its first three layers for unsupervised learning (Fig. 1(b)).

The fuzzy input layer transfers the original input values into membership degrees
with a membership function attached to the fuzzy input nodes. The membership
function can be triangular, Gaussian, and so on. The number and the type of the
membership function can be dynamically modified during the evolving process. In
this research we used the triangular membership function.
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Unlike Fuzzy ART, EFuNN groups input vectors into patterns based on one
distance measure only, the local normalized fuzzy distance between a fuzzy input
vector X and a weight vector W associated with pattern j, which is defined by

X, — W,
U X+ W
where |-| denotes the same vector norm defined in Fuzzy ART. The local

normalized fuzzy distance between any two fuzzy membership vectors is within the
range of [0, 1].

The rest of the clustering algorithm of EFuNN is very similar to that of Fuzzy
ART. When a new input vector X is presented, EFuNN calculates the corresponding
fuzzy input vector X and evaluates the normalized fuzzy distance between X and
the existing pattern weight vectors. The activation of the pattern node layer A is then
calculated. The activation of a single pattern node j is defined by

A() = f(D(Xy, W), )

where f can be a simple linear function, for example, A(j) = 1 — D(X,, W;). EFuNN
finds the closest pattern node j to the fuzzy input vector that has the highest
activation value A(j). If A(j)=p, where p is the vigilance parameter (the original
EFuNN paper named it sensitivity threshold (Kasabov, 2001)), the new input is
assigned to the jth pattern and the weight vector W; is updated according to the
following vector operation:

Wj(nelt') — W](-OM) + ﬁ(Xf _ WJ(DM)), (10)

where f is the learning rate. Otherwise, a new pattern node is created to
accommodate the current instance X.

The parameters p and f can be static, or they can be self-adjustable while the
structure of EFuNN evolves. They can hold the same values for all the patterns, or
they can be pattern-specific so that the pattern node that has more instance members
will change less when it accommodates a new instance. In our early implementation,
all the pattern nodes share the same static p and f values.

4. Experiments

In this section we describe some experiments. The emphasis of the experiments is
on the understanding of how Fuzzy ART and EFuNN-based adaptive anomaly
detection systems work in practice. One objective of our experiments is to observe
the influence of variability of the tunable parameters on the performance of an
anomaly detection system. Another objective of the experiments is to compare SVM-
based static learning and evolving connectionist system-based adaptive learning.
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4.1. Static learning via support vector machines

SVM is a relatively new and state-of-the-art classification method pioneered by
Vapnik (1998). It is based on the so-called structural risk minimization principle,
which minimizes an upper bound on the generalization error. The method performs
a mapping from the input space to a higher-dimensional feature space through the
use of a kernel function. It separates the data in the feature space by means of a
maximum margin hyperplane. Schélkopf et al. (2001) proposed a method of
adapting the SVM paradigm to the one-class problem. The origin of the coordinate
system, after transforming the feature via a kernel, is treated as the only member of
the second class. Training a SVM is equivalent to solving a linearly constrained
quadratic programming problem.

In our experiments, we used SVM to demonstrate the weakness of static learning
and the importance of adaptive learning. SVM was employed to learn a model (i.e.,
support vectors) that fits the training data set. The model was then tested on the
testing data set without any update (thus it is static learning). SVM is optimal when
the data are independent and identically distributed (i.i.d.). If there was concept drift
between the training data set and the testing data set, SVM would generate
classification errors. Adaptive learning can adapt to concept changes incrementally
and learn new patterns when new testing instances are presented to the learning
system. Therefore the classification accuracy is improved.

In our research, we used LIBSVM (version 2.35) (Chang and Lin, 2001), an
integrated tool for SVM classification and regression.

4.2. Cost function

To facilitate performance comparison among different methods, we used the cost
function

Cost = (1 — hit rate) + y * false positive rate, (11)

where the hit rate is the rate of detected intrusions (attacks or masquerades), the false
positive rate is the probability that a normal instance is classified as anomalous, and
the parameter y represents the relative cost difference between a false alarm and a
miss. There is no obvious way to determine the value of y, since the cost of a false
alarm as well as the cost of a miss will vary from one environment to another. Here
we set the y value to 6, which was used in Maxion and Townsend (2002), while other
values are certainly applicable. Varying the tunable parameters’ values results in
different hit rates and false positive rates, and, subsequently, different cost values.
The lower cost, the better performance an intrusion detection system has.

4.3. Network intrusion detection
We conducted a series of experiments on a subset of the data set KDD Cup 1999

(The third international knowledge discovery and data mining tools competition
(KDD cup 1999) data, 1999) prepared for network intrusion detection. Many
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methods have been tested with this popular data set for supervised intrusion
detection. The data labels were usually used for training the learning systems. Our
evolving connectionist systems, however, do not rely on the data labels. They build
network connection patterns incrementally in an online unsupervised learning mode.
Therefore, they are not directly comparable to previously proposed supervised
learning methods.

The 1999 KDD Cup network traffic data are connection-based. Each data record,
described by 7 symbolic attributes and 34 continuous attributes, corresponds to a
TCP/IP connection between two IP addresses. In addition, a label is provided
indicating whether the record is normal or it belongs one of the four attack types
(Probe, DoS, U2R and R2L). The symbolic attributes that have two possible values
(e.g., logged_in) were represented by a binary entry with the value of 0 or 1. For
symbolic attributes that have more than two possible categorical values, we used
multiple entries to encode them in the vector representation, one entry for each
possible value. The entry corresponding to the category value has a value of 1 while
the other entries are set to 0. The attribute service has 41 types, and we further
classified them into {http, smitp, ftp, ftp_data, others} to reduce the vector
dimensions. The resulting feature vectors have a total of 57 dimensions.

Since different continuous attributes were measured on very different scales,
the effect of some attributes might be completely dwarfed by others that have
larger scales. Therefore, we scaled the attributes to the range of [0,1] by
calculating

vy —min(v;)
"~ max(v;) — min(v;)’

,, (12)
where v; is the actual value of attribute 7, and the maximum and minimum are taken
over the whole data set. However, we are aware that this scaling technique would not
work if the maximum and minimum values are not known a priori.

We formed a subset of the original data set consisting of 97277
normal connections and 9199 attacks by randomly sampling. We then conducted
two experiments with this subset. The first experiment (Exp. 1) was designed
to test our evolving connectionist systems. In the data stream of Exp. 1, the attack
examples randomly drawn from the 9199 attacks were inserted into the
97277 normal examples with a 1% probability. Fuzzy ART and EFuNN
were employed to model the network connections on the fly from an empty set of
normal patterns and detect the intrusions in the data stream. For the
second experiment (Exp. 2), the training data set and testing data set were
formed to compare the performance between static learning and adaptive learning.
The first 40% of the 97 277 normal examples were used for training, and the rest for
testing. The testing data set also included attacks interspersed into the normal
examples with the probability of 1%. The model learned from the training examples
was applied to the testing data set. The model remained unchanged during the
testing process for static learning, while it was updated continuously for adaptive
learning methods. Table 1 lists the numbers of normal and attack examples in Exp. 1
and Exp. 2.
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Table 1
Numbers of normal and attack examples in Exp. 1 and Exp. 2

Exp. 1 Exp. 2

Normal Attacks Training normal Testing normal Attacks
97277 998 38910 58367 580
Table 2

The performance (false positive rate, hit rate and cost) of Fuzzy ART and EFuNN with the Exp. 1 data
stream

0 Fuzzy ART EFuNN

False positive Hit rate Cost False positive Hit rate Cost

rate (%) (%) rate (%) (%)
0.90 1.82 79.8 0.311 0.259 334 0.682
0.91 2.07 73.6 0.389 0.340 37.2 0.649
0.92 2.06 66.3 0.460 0.421 39.3 0.632
0.93 2.35 86.3 0.278 0.573 66.4 0.370
0.94 2.31 66.9 0.469 0.823 57.4 0.475
0.95 3.13 66.6 0.521 1.29 74.9 0.328
0.96 3.33 64.4 0.556 1.97 90.0 0.218
0.97 4.42 89.7 0.369 3.30 91.7 0.281
0.98 5.81 93.2 0.417 6.99 98.7 0.433
0.99 8.84 98.1 0.549 18.3 99.6 1.10

Results illustrate the impact of varying p on their performance.

4.3.1. Effectiveness of varying vigilance

The vigilance parameter p controls the degree of mismatch between new instances
and previously learned patterns. The greater the value of vigilance, the more similar
the instances ought to be in order to be assigned to a pattern. We studied the effect of
varying p while keeping the values of other parameters fixed. Table 2 presents the
results when p’s value was varied from 0.9 to 0.99 with the data stream of Exp. 1.
The learning rate parameter ff was set to 0.1, N, was 8 and Min .y, was 4. The
false positive rate was calculated as the percentage of normal instances that were
labeled anomalous out of the 97277 normal examples. Similarly, the hit rate was the
percentage of detected attacks (i.e., labeled anomalous) out of the 998 attacks.

The results show that the false positive rate increases monotonically as the
vigilance threshold is raised. This is due to the fact that more normal instances are
classified as uncertain and then anomalous when the value of p increases. Meanwhile,
it is interesting to note that the hit rate oscillates at lower p values, and then
approaches to 100% as p is raised nearer to 1.0. Ideally, the hit rate should increase



Y. Liao et al. | Journal of Network and Computer Applications 30 (2007) 60-80 73

monotonically as well. Its oscillation may suggest the abnormality of the data. The
cost of Fuzzy ART reaches the lowest value at p = 0.93 with a false positive rate of
2.35% and hit rate of 86.3%. For EFulNN, the lowest cost is obtained at p = 0.96
while the hit rate is 90% and the false positive rate is as low as 1.97% (values in
bold).

4.3.2. Effectiveness of varying learning rate

The learning rate parameter § determines how fast the system should adapt to new
instances in order to accommodate them. A higher value of f places more weight to
the new instance when it is assigned to a pattern and less weight to existing members
of the pattern. We evaluated the performance of Fuzzy ART and EFuNN with the
Exp. 1 data stream by widely varying the learning rate. The results are described in
Table 3. The vigilance parameter was set to 0.93 for Fuzzy ART and 0.96 for
EFuNN, respectively, since they provided the lowest cost when the effectiveness of
varying vigilance was studied. N, was set to 8 and Min .y, was 4.

It is interesting to note that for the Exp. 1 data set, § = 0.1 appears to be the best
choice for both Fuzzy ART and EFulNN in terms of the cost (values in bold). Higher
f values provide relatively stable false positive rates and hit rates. For Fuzzy ART,
lower f values (ff = 0.01 or 0.001) cause much lower false positive rates as well as
lower hit rates. For EFuNN, however, the false positive rate gets even higher at
lower 8 values while the hit rate declines slightly.

4.3.3. Effectiveness of varying N ucn and Min oy,

Nyaren and Min,,,; are two other important parameters for an adaptive anomaly
detection system. N, represents the delay the system will experience before it
evaluates a newly created uncertain pattern. If it is too long, there is a risk that an
anomalous instance cannot be handled in a timely manner. If it is too short, large
amount of false alarms may be generated. Min ,,,, is the minimum number of

Table 3
The performance of Fuzzy ART and EFuNN with the Exp. 1 data stream
p Fuzzy ART EFuNN
False positive Hit rate Cost False positive Hit rate Cost
rate (%) (%) rate (%) (%)
0.001 0.256 24.9 0.766 2.34 76.4 0.377
0.01 0.675 54.7 0.493 2.20 88.3 0.249
0.1 2.35 86.3 0.278 1.97 90.0 0.218
0.3 3.17 68.6 0.504 1.69 71.3 0.329
0.5 3.44 71.0 0.496 1.64 72.7 0.371
0.7 3.58 70.1 0.513 1.60 77.4 0.322
0.9 3.53 79.0 0.369 1.47 76.1 0.327
1.0 3.23 67.8 0.515 1.55 74.9 0.343

Results illustrate the impact of varying f# on their performance.
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Table 4
The performance of Fuzzy ART and EFuNN with the Exp. 1 data stream

Novaten Min ount Fuzzy ART EFuNN
False positive Hit rate  Cost False positive Hit rate  Cost
rate (%) (%) rate (%) (%)
4 2 1.71 74.2 0.360 1.53 88.9 0.203
8 4 2.35 86.3 0.278 1.97 90.0 0.218
12 4 1.77 77.1 0.335 1.65 89.4 0.205
12 6 4.03 70.0 0.542 3.66 92.9 0.291
12 8 6.04 95.4 0.408 5.04 95.7 0.345
16 6 2.97 61.1 0.567 2.95 92.9 0.248
16 8 4.95 72.0 0.577 4.19 94.3 0.309
16 10 6.77 84.2 0.564 6.41 96.3 0.422

Results illustrate the impact of varying N, and Mingg,,, on their performance.

members that an uncertain pattern ought to have before it is changed to normal. We
empirically studied the effect of varying N and Ming,,,; on the performance of
Fuzzy ART and EFuNN. Different values of N,.. and Min.,, and the
corresponding results are described in Table 4. The vigilance parameter was set to
0.93 for Fuzzy ART and 0.96 for EFuNN, and the learning rate was 0.1 for both of
them.

The results show that N, = 8 and Min ... = 4 is a better choice than others for
Fuzzy ART as it provides the lowest cost. Similarly, Ny =4 and Mingy,; = 2
gives the best performance for EFuNN. The hit rate of EFuNN is higher and more
stable than that of Fuzzy ART as the values of N, and Ming,, change. It
indicates that given the distance measure of EFuNN, the attacks are more
distinguishable among the normal instances (values in bold).

4.3.4. Static learning vs. adaptive learning

We compared Fuzzy ART and EFuNN with SVM using the Exp. 2 data sets.
During the training process, Fuzzy ART and EFuNN assumed every pattern was
normal and no instance was discarded. During the testing process, however, the task
of Fuzzy ART and EFuNN became twofold: evolving their structure to
accommodate new patterns and detecting anomalous instances. For simplicity, we
set Nyaren to 8 and Ming,,,, to 4. We then varied the vigilance parameter’s value from
0.9 t0 0.99, and the learning rate’s value from 0.01 to 0.9. The parameter settings that
provide the lowest cost for Fuzzy ART and EFulNN are shown in Table 5.

The SVM model learned from the one-class training data set was applied to the
testing data set. Common types of kernel functions used in SVM include linear,
radial basis and polynomial functions. In our experiments, we found the radial basis
kernel performed better than other kernel functions for one-class learning. The
parameter v (Scholkopf et al., 2001), which controls the number of support vectors
and errors, was determined by cross-validation with the training data sets.
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Table 5
The performance of SVM, Fuzzy ART and EFuNN in Exp. 2

SVM Fuzzy ART EFuNN
p 0.93 0.96
p 0.2 0.01
False positive rate (%) 12.4 2.98 0.884
Hit rate (%) 90.7 94.0 85.0
Cost 0.836 0.239 0.203

Table 5 compares the performance of SVM, Fuzzy ART and EFuNN. SVM was
able to detect 90% of the attacks in the testing data set. However, the false positive
rate was as high as 12.4%, which indicates the presence of concept drift between the
training data set and the testing data set. Compared to SVM, Fuzzy ART and
EFuNN generated significantly less false alarms. Fuzzy ART was the best in terms of
hit rate, whereas EFuNN gave the lowest cost.

4.4. Masquerade detection with the user profiling data

4.4.1. Data set descriptions

We obtained a set of Windows NT user profiling data from an NSA officer. The
data was collected for 20 users on 21 different hosts in a real-world government
agency environment (a single user might have worked on multiple hosts). During the
raw data collection, a tool was developed to query the Windows NT process table
periodically (2-3 times per second) and collect all the process information of each
user’s login session. Processes that were not related to user identification were filtered
out during the pre-processing. The processes that correspond to the windows the
user activated are of special interest to us because they represent the programs the
user was running. The accumulated CPU time was calculated for each of these
window-associated processes from a user’s login to logout, which reflects the
workload the user performed during this login session. For processes that have the
same process name, their CPU times were added together. Then a CPU time vector
can be formed for each login session, where the value of each entry is the percentage
of CPU time consumed by a unique process during this login session. There are 105
processes contained in this data set, for example, netscape, explorer, outlook, msoffice
and so on, while each individual user has his or her own process ‘““vocabulary.”

In addition to the CPU information, we also included the login time in the input
vectors. A user’s login time was categorized as early morning (before 7 AM), morning
(between 7 AM and 12 PM), afternoon (between 12 and 6 PM) or evening (later than
6 PM). Since the login time has four possible values, we have four entries in the input
vectors corresponding to the login time. Therefore, each login session is encoded as a
vector that contains CPU time percentages consumed by the user as well as four
additional entries that represent the user’s login time.
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Table 6
Number of login sessions and the masquerade examples

User ID Exp. 3 Exp. 4
Self-sessions Masquerades Training Testing self-sessions Masquerades

1 184 7 92 92 7
2 54 1 27 27 2
4 45 2 22 23 2
6 55 2 27 28 3
7 50 2 25 25 2
14 58 2 29 29 3
19 87 6 43 44 6
Total 527 22 259 268 25

We selected the 7 users that have the most login sessions to serve as our
masquerade targets. We then used the remaining 13 users as masqueraders and
inserted their data into the data of the 7 users. Two experiments were conducted with
the data set, similar to the ones with the KDD Cup 1999 data set. The first
experiment (Exp. 3) was designed to test our evolving connectionist systems. The
masquerade examples randomly drawn from the 13 users were embedded into the 7
users’ login sessions with a 3% probability. In the second experiment (Exp. 4), in
order to compare the performance of SVM, Fuzzy ART and EFuNN, the 7 normal
users’ login sessions were split into two parts. The first half of the login sessions were
used for training the learning systems, and the remaining for testing. Then the
masquerade examples were inserted in the testing data sets with a probability of 6%.
The values of the masquerade probability were chosen so that there was at least one
masquerade example in each user’s testing data set for both experiments. Table 6
shows the numbers of the 7 users’ login sessions and the corresponding masquerade
examples for each experiment. The user IDs are user identification numbers inherited
from the original data set. We built learning models for each of the 7 individual users
to see if they could identify the masquerade examples hiding in their testing data sets.

4.4.2. Results

For Fuzzy ART and EFulNN, when a testing instance is labeled anomalous and a
Level 2 alarm is generated, it is either a true positive (i.e., a hit) if the instance
represents a masquerade example, or a false positive if the instance is the user’s own
login session. We varied vigilance p’s value from 0.89 to 0.99 and learning rate [5’s
values from 0.1 to 1.0, respectively. The choice of N, and Min,,, depends on the
profiled individual user. For simplicity, we set N, to 3 and Mingy,,, to 2 for all
users, which were found to be an acceptable compromise. For each of the 7 users, we
report the parameter settings (p and f) that give the lowest cost in Table 7 for Exp. 3
and Table 8 for Exp. 4.

In Exp. 3, both Fuzzy ART and EFulNN were able to model user behavior starting
from an empty set of normal patterns and still recognize the majority of the
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Table 7
The performance of Fuzzy ART and EFuNN in Exp. 3. Nyuen = 3, Mineoyun = 2
User]ID Fuzzy ART EFuNN

o p False positives Hits p p False positives Hits
1 0.95 0.4 5 3 0.94 0.2 7 5
2 0.92 0.8 6 1 0.91 0.8 5 1
4 0.90 0.4 1 1 0.89 0.2 2 2
6 0.91 0.4 1 2 0.90 0.4 0 2
7 0.90 0.6 4 1 0.90 0.2 0 1
14 0.93 0.8 7 1 0.90 0.4 2 1
19 0.91 1.0 0 6 0.89 1.0 2 6
Total 24 15 18 18

False positive rate = 24/527 = 4.55% False positive rate = 18/527 = 3.42%
Overall Hit rate = 15/22 = 68.2% Hit rate = 18/22 = 81.8%

Cost = 0.591 Cost = 0.387

masquerade instances, while the false positive rate was under 5%. EFuNN
performed slightly better than Fuzzy ART because EFuNN provided higher hit
rate and lower false positive rate and thus lower overall cost.

Table 8 shows the performance comparison of static learning with SVM and
adaptive learning with Fuzzy ART and EFuNN in Exp. 4. The parameter v of SVM
was again determined by cross validation with the training data sets. SVM generated
42 false alarms (15.7% false positive rate) due to the concept drift between the
training data set and the testing data set. The false positive rates of Fuzzy ART and
EFuNN were significantly less because they were able to adapt to user behavior
changes incrementally, while the hit rates were comparable to that of SVM.
Therefore, the overall cost of Fuzzy ART and EFulNN was largely reduced.

5. Discussion

Our approach assumes that the number of normal instances vastly outnumbers the
number of anomalies, and the anomalous activities appear as outliers in the data.
This approach would miss the attacks or masquerades if the underlying assumptions
do not hold. For example, some DoS attacks would not be identified by our adaptive
anomaly detection systems. Nevertheless, our anomaly detection framework can be
easily extended to incorporate signature detection. Previously learned patterns can
be labeled in such a way that certain patterns may generate an alert no matter how
frequently they are observed, while other patterns do not trigger an alarm even if
they are rarely seen (Valdes, 2003).

With our adaptive anomaly detection framework, it is possible that one can
deliberately cover his malicious activities by slowly changing his behavior patterns
without triggering a level 2 alarm. However, a level 1 alarm is issued whenever a new
pattern is being formed. It is then the security analyst’s responsibility to identify the
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user’s intent in order to distinguish malicious from non-malicious anomalies, which
is beyond the scope of this paper. We also note that in case a continuing abnormal
activity occurs, large amount of level 1 alarms may be raised and the security analyst
can still get overwhelmed.

6. Conclusion

This paper has presented a new adaptive anomaly detection framework through
the use of evolving connectionist systems. A subject’s normal behavior is learned in
the online unsupervised mode. The performance of two adaptive anomaly detection
systems, based on Fuzzy ART and EFuNN, was empirically tested with the KDD
Cup 1999 network data and the user profiling data. The experiments have shown
that our adaptive anomaly detection systems are able to adapt to user or network
behavior changes while still recognizing anomalous activities. Compared to the
SVM-based static learning, the adaptive anomaly detection methods can signifi-
cantly reduce the false alarms.

In order to make an adaptive anomaly detection system scalable, it might be
necessary to prune or aggregate pattern nodes as the system evolves, which is a
significant issue for our future work. Other issues of our future work include
exploring automated determination of the parameters and comparing more evolving
connectionist systems, such as evolving self-organizing maps.
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